
Compiling, installing and configuring
Apache and PHP on Linux
Elliot Smith, moochlabs.com

Table of Contents
Introduction..3
Compiling Apache..3

Pre-compilation decisions..3
Preparation...4

Preparation on Fedora...4
Compiling..4
Controlling Apache..5
Modules...6

Disabling modules...7
Enabling modules..8

Other configure options...8
Other useful modules we're not using..8
Which Multi-Processing Module?...9
Our uber configure command..9
Recompiling...10

1. Upgrading the main httpd binary..10
2. Compiling modules statically into the main Apache binary...10
3. Compiling new shared modules..11

Patching...12
Configuring Apache..13

Default configuration...13
Viewing all loaded modules...13
Initial configuration...14
Starting/stopping automatically...15

Starting/stopping automatically using chkconfig on Fedora...16
General server limits..16
MPM settings...17
File layout..18

Summary of filesystem layout..18
Logging..19

Adding logging configuration...20
Log rotation using rotatelogs and pipes..21
Log rotation using logrotate..21
Custom log rotation scripts...22

Configuring file serving...23
Safe defaults for serving directories..23
Options on directories...24
AllowOverride: overriding server configuration in a directory..26
Hiding important files...26
Setting the default home page...27
Setting the right MIME types..27
Compressing content sent to the client...28

Hiding the server's identity..28

1

chrooting..29
CGI...30

Apache and CGI...30
Improving security with suEXEC and FastCGI..31

SSL...32
Creating a self-signed certificate...32
Configuring Apache to use SSL...33

Adding PHP..36
Pre-installation...36
Preparation...36
Compiling PHP..37

A note on SELinux..39
Removing PHP..39
Extensions..39
Recompiling PHP..40

1. Adding a new extension..40
2. Recompiling the PHP binary...40

Configuring PHP..40
Testing PHP + MySQL..42
Testing PHP's GD extension..43

.htaccess files..45
Setting up authentication by username and password...45
Authorisation by group..46
Rewriting URLs...46

Virtual hosts..47
Setting up jelica.com..47

Setting up logging and CGI for a virtual host...49
Allow following of symlinks..50
Allowing directive overrides...50
Virtual host PHP configuration...50

The final configuration file for our virtual host...51
Fixing localhost..52

Troubleshooting..55
Logs...55
Status reports..55
Standard tools..56
More advanced tools..56

License..57

2

Introduction
This document outlines how to compile, install, and configure Apache and PHP on Linux. It is not a
complete manual to the process, but goes through the process step by step, explaining the decisions
to be made along the way.

We are working towards the following scenario:

• A secure, custom built and configured Apache web server with support for PHP 5 (including
the MySQL and GD extensions) plus virtual hosts

• SSL support for our main website

• A default (package managed) MySQL installation, accessible to the Apache server

• Some PHP scripts to prove we can connect to the MySQL server from PHP, and that we can
use the GD graphics toolkit

• A layout for virtual hosts: we're going to assume one client, with their own website at
jelica.com

• A user account for the virtual host, isolated from the main Apache configuration, allowing
the user to login and edit their website

Note that I wrote these instructions based on Ubuntu, but they should be portable to other Linux
distributions. In particular, I have outlined Fedora-specific issues, as the materials were written for a
training course run using machines installed with Fedora.

Compiling Apache

Pre-compilation decisions
Which version of Apache?

• 1.x
Has been around for years, and is a known quantity. A safe choice.

• 2.x
Code is much improved, and many of the modules have been revamped. Configuration is
also more consistent, and the format for directives improved. However, some people have
reservations about using it. Although it is possible to run in a hybrid multi-process/multi-
thread mode (using the worker MPM), many of the libraries you're likely to use with it may
not be (e.g. PHP extensions). However, under normal conditions (i.e. up to tens of thousands
of hits per day, rather than millions), this version of Apache is likely to be a better solution
than Apache 1.x.

Binary or source?

• Source = more control; you can patch when you want; you can add features when you like

• Binary = easier to manage; automatic updates; less control

• via package management tool (using individual components), e.g. Apt on Debian, RPM
on Fedora

• via a pre-packaged stack containing all components, e.g. XAMPP
(http://apachefriends.org/en/xampp.html) - also gives some of the advantages of a source

3

http://apachefriends.org/en/xampp.html

installation, as you can compile new modules into it

• via a pre-packaged stack, with optional certification and support, e.g. SpikeSource
(http://www.spikesource.com/downloads.html), Sourcelabs
(http://sourcelabs.com/?page=software&sub=amp)

We'll do it from source, using version 2.2

Preparation
Preparing the machine you're going to install on

• gcc

• OpenSSL

• OpenSSL development headers (libssl-dev on Ubuntu)

• ntpdate to ensure server time is accurate

• Perl 5 – allows you to use some of the support scripts like apxs (for building and installing
shared modules)

Download the source and check the archive's integrity using md5sum like this:

root@lily:/home/ell/download# md5sum httpd-2.2.2.tar.bz2

9c759a9744436de6a6aa2ddbc49d6e81 httpd-2.2.2.tar.bz2

Compare the string on the left to the MD5 hash listed on the Apache download site. They should
match. If they don't, the download has been corrupted, so do it again.

Preparation on Fedora

On Fedora, I found I needed to install the following via "Add/Remove Software":

● Development > Development Libraries + Development Tools + GNOME Software
Development

Compiling
Unpack the tarball

Need to get apr up and running first:

cd httpd-2.2.2/srclib/apr

./configure --prefix=/opt/apache-apr

make

make install

Then apr-util:

cd httpd-2.2.2/srclib/apr-util

./configure --prefix=/opt/apache-apr-util --with-apr=/opt/apache-apr

make

4

http://sourcelabs.com/?page=software&sub=amp

make install

Then Apache:

cd httpd-2.2.2

./configure --prefix=/opt/apache --with-apr=/opt/apache-apr --with-apr-util=/opt/apache-apr-util

make

make install

Test:

/opt/apache/bin/apachectl start (as root)

NB you need to be root if the port Apache listens on (Listen directive) is below 1024; default
is port 80

Test by visiting http://localhost/ in a web browser

Controlling Apache
ps to see the processes Apache starts

When Apache starts, it establishes a parent process as the original user (e.g. root in our case); it then
spawns child processes to handle requests. The number of children is configurable (see later).

The PID file stores the ID of the parent process. It can be sent a variety of standard POSIX signals
to control it directly; or (better) it can be controlled through the apachectl script.

The files in the log directory are the default Apache logs, as specified by the auto-generated config.
file. error_log is useful for debugging, and at the moment contains start/stop info.; access_log
records requests served.

The apachectl script takes a variety of switches

start = start the parent process

stop (TERM signal) = tell the parent to kill its children; it does this immediately; then once
they've exited, the parent kills itself

graceful (USR1 signal) = instruct the parent process to advise the children to exit; they
allow all requests being served to complete; then they stop; then the parent stops; then the parent
restarts itself; the parent process then starts new children with the latest version of the configuration
file

graceful-stop (WINCH signal) = as graceful, but no restart after everything stops

restart (HUP signal) = this restarts its children (as in TERM), but doesn't stop the parent
process; the parent process just rereads its configuration file and carries on running

status = show short status report (NB this needs lynx installed to work, and mod_status to
be enabled)

configtest = test whether the config. file is readable and correctly formatted

5

Modules
Modules add extra functionality to Apache. Their functionality is managed via Apache
configuration directives; and each module makes different directives available.

Static- vs. dynamically-loaded modules?

• Static = whole server + modules in one binary; slightly faster; harder to compromise as you
can't just link new modules into it; must recompile whole thing each time you update; uses
more memory

• Dynamic: you need to have mod_so enabled (NB mod_perl should not be compiled as a
shared module, according to http://www.faqs.org/docs/apache-compile/apache.html)

We'll do as many as we can as dynamic modules, while keeping the core static

To see the list of modules compiled into the httpd binary:

/opt/apache/bin/httpd -l

Here's what I got:

 core.c (yes - essential for the server to operate)

 mod_authn_file.c (yes - essential for Basic authentication)

 mod_authn_default.c (yes - essential for authentication)

 mod_authz_host.c (yes - authorization by hostname/IP)

 mod_authz_groupfile.c (yes - authorization by groups defined in a file)

 mod_authz_user.c (yes - authorization by users defined in a file)

 mod_authz_default.c (yes - essential for authorization)

 mod_auth_basic.c (yes - support for Basic authentication)

 mod_include.c (no - unless you need server-side includes)

 mod_filter.c (no - provides filtering of resources before they are returned in the response, e.g.
zipping the response body, downsampling every image sent back from the server)

 mod_log_config.c (yes - allows customisation of log output)

 mod_env.c (no - unless need to set and clear environment variables for use with CGI scripts - e.g.
essential if running Ruby on Rails applications with FastCGI)

 mod_setenvif.c (yes - supports a lot of other modules)

 prefork.c (yes)

 http_core.c (yes)

 mod_mime.c (yes - allows Apache to correctly deliver content based on MIME type)

 mod_status.c (no - shows server status page)

 mod_autoindex.c (no - unless you want directory indexes to be shown for directories with no
index file)

 mod_asis.c (no - used to send a file without appending response headers to it - so you could have a
file which contains a whole HTTP response, including headers)

 mod_cgi.c (no - unless you want CGI script support)

6

 mod_negotiation.c (no - it provides a method for negotiating the best content type to suit the
client's capabilities)

 mod_dir.c (yes - controls the DirectoryIndex directive, used to set the default file to serve for a
directory, e.g. index.php)

 mod_actions.c (no - triggers CGI scripts based on the MIME type of a resource requested - e.g. all
requests for image/jpeg are handed off to a specific CGI script)

 mod_userdir.c (no - unless you want ~/public_html directories for user home sites)

 mod_alias.c (yes - handles aliasing of URLs to directories)

 mod_so.c (yes - shared object support for dynamic extension loading)

Disabling modules

Any modules we want turned off have to be explictly disabled with this syntax:

--disable-MODULE

For our purposes:

--disable-userdir

--disable-actions

--disable-negotiation

--disable-cgi

--disable-asis

--disable-autoindex

--disable-status

--disable-env

--disable-filter

--disable-include

BUT we can also remove the remaining modules and make them dynamically-loaded:

--disable-mod_authn_file

--disable-mod_authn_default

--disable-mod_authz_host

--disable-mod_authz_groupfile

--disable-mod_authz_user

--disable-mod_authz_default

--disable-mod_auth_basic

--disable-mod_log_config

--disable-mod_mime

--disable-mod_dir

--disable-mod_alias

 Note we didn't disable a few of the modules, as we do want them statically compiled (e.g. mod_so,
which enables shared modules to be loaded)

7

Enabling modules

Extra modules we want:

ssl (support for SSL - we'll put this in statically)

setenvif (set environmental variables conditional upon modules being loaded)

headers (enable modification of request/response headers)

rewrite (for rewriting requests - used for search-engine friendly URLs, for example)

deflate (for zipping content before it is sent to client [useful if client supported gzipped
streams, e.g. Firefox])

cgi (for running CGI scripts)

The typical method (the one we'll use) is to use shared modules rather than static ones

We do this by adding this option to ./configure, with the names of the modules we want to enable:

--enable-mods-shared='setenvif headers rewrite deflate cgi'

But we will enable SSL as a static module, to ensure it is always used and to minimise the
possibility of the library being trojaned.

--enable-ssl

We can also add back in the modules which were previously statically-compiled but which we are
converting to dynamically-loaded modules:

--enable-mods-shared='authn_file authn_default authz_host authz_groupfile authz_user
authz_default auth_basic log_config mime dir alias'

Other configure options
If you want to be able to use apxs, it's a good idea to specify the path to Perl explicitly (just in case
multiple versions are installed):

--with-perl=<path to perl executable>

As we have turned on ssl, best to explicitly set where OpenSSL is installed:

--with-ssl=<path to openssl include directory, e.g. /usr/include/openssl>

Full list of options to configure:

http://httpd.apache.org/docs/2.2/programs/configure.html

Other useful modules we're not using
Here are some modules we're missing out, but which can be very useful:

• mod_dav (WebDAV support)

• mod_ldap (base module to support other modules, e.g LDAP authentication modules)

• mod_proxy (use Apache as a proxy to other servers)

8

• mod_proxy_balancer (for load balancing)

• mod_cache (cache local or proxied content)

• mod_vhost_alias (automatic mapping of URLs onto virtual hosts)

Which Multi-Processing Module?
prefork is the default for Linux - stable, tolerant of dodgy module code (one process at a time
handles each connection)

worker is more lightweight, but less tolerant (uses multiple child processes, plus each child has
multiple threads - each thread handles one connection)

prefork is the recommended MPM to use if you intend to run PHP as a module (see
http://www.php.net/manual/en/faq.installation.php#faq.installation.apache2); however, if you intend
to use FastCGI or similar to run PHP, the worker MPM is stable.

To enable worker instead of prefork on Linux add the following configure option:

--with-mpm=worker

Our uber configure command
Putting all of this together gives us our master configure command:

./configure --prefix=/opt/apache --with-apr=/opt/apache-apr --with-apr-util=/opt/apache-apr-util --
with-perl=/usr/bin/perl --with-ssl=/usr/include/openssl --disable-userdir --disable-actions --disable-
negotiation --disable-cgi --disable-asis --disable-autoindex --disable-status --disable-env --disable-
filter --disable-include --disable-mod_authn_file --disable-mod_authn_default --disable-
mod_authz_host --disable-mod_authz_groupfile --disable-mod_authz_user --disable-
mod_authz_default --disable-mod_auth_basic --disable-mod_log_config --disable-mod_mime --
disable-mod_dir --disable-mod_alias --enable-mods-shared='cgi setenvif headers rewrite deflate
authn_file authn_default authz_host authz_groupfile authz_user authz_default auth_basic
log_config mime dir alias' --enable-ssl

It would be a good idea to put this into a script, so you have it available each time you recompile
Apache.

Remember that once we've run configure, we then need to do:

make

make install

This performs the compilation (according to our configuration) and installs the binaries into the
appropriate location (under /opt/apache).

Recompiling
Recompiling a new version of Apache (given an old version already exists) isn't too arduous. There
are several things we might want to do:

9

1. Upgrade Apache as a whole (e.g. moving from version 2.2.55 to 2.2.57)

2. Compile modules statically into the httpd binary (either new ones or existing shared ones we
want to move into the core httpd binary)

3. Compile new shared modules (either completely new ones or existing statically-compiled
ones)

See http://httpd.apache.org/docs/2.2/install.html for more details. Outlines of each process are given
below.

1. Upgrading the main httpd binary

You can only do this for minor version number changes, e.g. version 2.2.0 to 2.2.1; you can't do it to
go between major version number changes, e.g. 2.0 to 2.2.

If you are upgrading, it's worth doing it alongside your existing installation. You could do this by
changing the --prefix option to configure, so that the new version ends up in a different directory;
and setting a different Listen directive inside the new httpd.conf file so your new version runs on a
different port. One you're happy, you can re-run configure with the correct --prefix setting.

Here's the procedure:

1. Download the new source distribution and unpack it

2. Copy the config.nice file from your old source tree for Apache into the top of the new source
tree. This file is basically a script which will replay all the configure options you used to
build the old version.

3. Run the following commands:

./config.nice
make
make install

The Apache make file will not overwrite existing files on the server like configuration files
(httpd.conf) or files which have changed. But it will overwrite the httpd binary and any modules
which have changed.

2. Compiling modules statically into the main Apache binary

Let's say we have mod_ssl compiled as a shared module, and want to recompile our httpd binary to
statically include it instead. We can do this as follows:

1. Pass an edited set of options to the ./configure script. For example, let's say we had SSL
compiled as a shared module (a fragment of our configure options lines):

./configure --enable-ssl=shared ...

Change this to compile the module statically instead:

./configure --enable-ssl ...

2. make

The make command rebuilds the httpd binary (plus any other files which have changed as a
result of our reconfiguration)

3. Manually copy the new httpd binary (in the root of the build directory) into our existing

10

http://httpd.apache.org/docs/2.2/install.html

Apache configuration, i.e.

cp ./httpd /opt/apache/bin/

4. Reset the permissions on the new binary (see later)

5. Remember to remove any LoadModule lines for the old shared version of the module, so
that the statically-compiled module is used instead.

6. (Optional) Remove the shared module from the modules directory, as it is no longer being
loaded.

We could follow the same approach to enable a new static module in the httpd binary (rather than
move a module from being dynamic to static).

Alternatively, we could recompile, then use make install to overwrite our installation with any
changed files (see above).

3. Compiling new shared modules

We could do this to either add a completely new shared module, or to move a static module to being
a shared module.

The apxs tool can be used to add new shared modules into an existing Apache installation. The
procedure may vary slightly from module to module, but for the ones which are part of the core
Apache distribution it follows this pattern:

1. Locate the module directory (in the source tree, under modules). The modules are arranged
into groups, e.g. proxy for modules which handle proxying functions, mappers for mapping
modules like mod_rewrite. What we're looking for is the appropriate .c file for the module.

2. Run the apxs command with the -c (compile) and -i (install) flags, e.g.

/opt/apache/bin/apxs -c -i -a mod_rewrite.c

This compiles up the new module binary (.so file) and deposits it into /opt/apache/modules.

3. Note that the -a switch to apxs automatically adds a LoadModule line to httpd.conf. If you
don't use this switch, you will need to manually add the LoadModule directive to httpd.conf
yourself, something like this:

LoadModule rewrite_module modules/mod_rewrite.so

If we want to move a static module to become a shared module, we will need to recompile the httpd
binary as well, and exclude the old static module (see instructions above).

We can demonstrate how this works by compiling a simple module like mod_echo. This turns the
Apache server into an echo server which repeats back whatever you send to it.

1. cd <Apache source root>/modules/echo

2. /opt/apache/bin/apxs -c -i mod_echo.c

3. Edit /opt/apache/conf/httpd.conf and add these lines:

LoadModule echo_module modules/mod_echo.so
ProtocolEcho On

4. Restart Apache

11

5. Test the module has loaded correctly using telnet:

telnet localhost 80

Type some commands, and they should be echoed back to you. This is Apache acting as an
echo server, using its newly-compiled echo module.

The beauty of Apache's modularity is that it is equally easy to remove a shared module. We can
simply remove the LoadModule directive in httpd.conf; and we could additionally remove the .so
file itself to be extra safe.

Patching
Occasionally, between releases of Apache versions, official patches may be released for the current
version. These patches will typically implement important security updates which are too vital to
wait until the next full release. They are fairly rare, but you should check for applicable patches
before compiling.

To get the patches, go to the source download directory on one of the mirror sites, via the Apache
Downloads link. Inside the main distribution directory is a patches directory, e.g.

http://www.mirrorservice.org/sites/ftp.apache.org/httpd/patches/

This contains a series of directories with names in this format:

apply_to_2.2.0/

Inside these directories are a series of patches for each released version of Apache. To apply a
patch:

1. Download the patch file

2. Place it in the source directory for Apache

3. Apply it to your source with:
patch -s < file.patch
where file.patch is the name of the patch file you downloaded

4. configure/make/make install (see the Upgrading section above for more details about the
effect of this)

12

http://www.mirrorservice.org/sites/ftp.apache.org/httpd/patches/apply_to_2.2.0/
http://www.mirrorservice.org/sites/ftp.apache.org/httpd/patches/

Configuring Apache

Default configuration
The default configuration for our compiled Apache is in /opt/apache/conf/httpd.conf. There are
other useful files containing sample configuration "fragments" in the /opt/apache/conf/extra
directory. They can be used for reference or pulled into your main config. file as they are, with little
modification.

Viewing all loaded modules
To show all loaded modules (including dynamically-loaded modules) once the server is running:

/opt/apache/bin/httpd -M

Which outputs:

Loaded Modules:

 core_module (static)

 mpm_prefork_module (static)

 http_module (static)

 so_module (static)

 authn_file_module (shared)

 authn_default_module (shared)

 authz_host_module (shared)

 authz_groupfile_module (shared)

 authz_user_module (shared)

 authz_default_module (shared)

 auth_basic_module (shared)

 deflate_module (shared)

 log_config_module (shared)

 mime_magic_module (shared)

 headers_module (shared)

 setenvif_module (shared)

 ssl_module (shared)

 mime_module (shared)

 dir_module (shared)

 alias_module (shared)

 rewrite_module (shared)

Syntax OK

13

NB this also checks the syntax of the config. file; can do this without displaying modules using:

/opt/apache/bin/httpd -t

Initial configuration
We have the option to use a single config. file OR spread it out over multiple files. Pros and cons:

• Single = everything in one place; difficult to manage with lots of vhosts

• Multiple = clear separation of different aspects of configuration

We'll use a single file for the main config.; plus a separate file for the SSL config., and one for each
virtual host.

We are also writing a config. file which only works for our compiled version of Apache. The default
generated file provided as an example in the Apache distribution contains a variety of conditional
statements. These apply different configuration directives depending on the underlying operating
system, but we are going to dispense with these as much as possible to get a streamlined
configuration file.

Start with a blank config file in

/opt/apache/conf/httpd.conf

Then add:

base of the web server install

ServerRoot /opt/apache

name of the web server (can help prevent

startup problems)

ServerName localhost

email address of the administrator

(shown in error messages)

ServerAdmin ell@localhost

location of the root of the web server document tree

DocumentRoot /var/www/htdocs

path to the process ID (PID) file, which

stores the ID of the main Apache process

PidFile /var/run/apache/httpd.pid

which port to listen on

Listen 80

do not resolve client IP addresses to names (reduces overhead)

14

HostNameLookups Off

effective user and group

User apache

Group apache

We will need to create the "effective user" under which Apache will run on the system. Apache will
run with the permissions of this user and group:

groupadd apache

useradd apache -g apache -d /dev/null -s /bin/false

(-d = home directory, -g = main group, -s = shell)

And we'll need to create the appropriate directories:

mkdir /var/www/htdocs (for the resources Apache will serve)

mkdir /var/run/apache (for the process file)

mkdir /var/log/apache (for logs)

There are also several directories lying around which we can safely remove:

rm -Rf /opt/apache/manual (the Apache manual)

rm -Rf /opt/apache/cgi-bin (we'll put the cgi-bin into individual host configurations)

rm -Rf /opt/apache/icons (icons used when listing the content of directories - we're not going
to be doing this anyway, so we may as well remove them)

It's necessary to keep the default logs directory, even though we're not using it directly, as some
modules use it to store files, while not providing a directive to customise the log directory location.

If it's useful you can also keep the man directory. You can access the files in this directory using the
man command like this:

man ./htdigest.1

for example, if you need to find out more about the commands Apache provides.

We can now try restarting to ensure our config. works:

/opt/apache/bin/apachectl restart

We won't be able to see our site anymore, but at least we should be able to see if the server starts
OK.

Starting/stopping automatically
Symlink into appropriate run-level

On Ubuntu, I suggest run-level 2

ln -s /opt/apache/bin/apachectl /etc/rc2.d/S85apache

15

ln -s /opt/apache/bin/apachectl /etc/rc2.d/K20apache

You also need to make sure that the network is up and the hostname set before you start the Apache
server, so a high number like 85 is suitable.

Starting/stopping automatically using chkconfig on Fedora

On Fedora, we can use the chkconfig to add Apache to the startup/shutdown sequence. chkconfig
uses specially-formatted comments in the start/stop script to determine when a service is started: at
which runlevels, and where in the sequence of starting/stopping services.

1. Make a symlink from the Apache control script to Fedora's init script directory:
ln -s /opt/apache/bin/apachectl /etc/rc.d/init.d/apache

2. Add these extra lines to the top of /opt/apache/bin/apachectl:

#
apache Control script for the Apache HTTP Server
#
chkconfig: 345 85 15
description: Apache web server

The chkconfig line specifies:
<run_levels> <start_priority> <stop_priority>

3. Add Apache to the services managed by chkconfig:
chkconfig apache on

4. Confirm the configuration:
chkconfig --list apache

You should see something like this:
apache 0:off 1:off 2:off 3:on 4:on 5:on 6:off

5. Once we have a script in /etc/rc.d/init.d, we can use a shortcut to start/stop services
manually:

service apache start
service apache stop
service apache restart
service apache graceful

etc.

General server limits
There are a range of directives which govern the generic operating capacity of the server: for
example, the maximum length of time to spend waiting for a client, the maximum number of client
connections allowed, whether to use KeepAlive connections, and so on. The most important ones
are:

time to wait for slow clients; default is 300,

but setting this lower improves resilience

16

against DOS attacks

TimeOut 60

keep-alive allows multiple HTTP requests to be

served over a single TCP request;

the client needs to explicitly mark itself

as being capable of handling this type of request

in a request header for Apache to serve the request this way

KeepAlive On

the max. number of requests to serve over a single

TCP connection; default is 100, but the

Apache manual recommends setting it higher

MaxKeepAliveRequests 200

length of time to keep a connection open while

waiting for the next request in a keep-alive

sequence; default is 5; lower it on heavily-loaded

servers to prevent Apache leaving

connections idling while they wait for clients

KeepAliveTimeout 15

maximum size of request body (0 = no limit)

LimitRequestBody 0

number of header fields allowed in a request

LimitRequestFields 100

how long header fields can be (in bytes)

LimitRequestFieldsize 8190

how long the initial line of a request can be

LimitRequestLine 8190

MPM settings
We also need some directives to control the activity of the MPM. For the prefork MPM (which
we're using) we can specify the following:

number of spare servers to keep running to

handle potential incoming requests

MinSpareServers 5

max. number of servers to leave idling

MaxSpareServers 10

17

number of servers to start when Apache boots

StartServers 5

maximum number of clients to serve simultaneously

MaxClients 150

maximum requests to handle by any one server instance before it
is restarted;

default is 10000 (unlimited), but setting it lower will help in
cases where

Apache modules are memory-leaking, as a single process will be
unable

to consume too much memory; for keep-alive sessions, this
represents the number of clients

per child, rather than requests per child

MaxRequestsPerChild 1000

If we're using the worker MPM, it has a different set of configuration directives. See the Apache
manual for more details, or the sample config. file in /opt/apache/conf/extra/httpd-mpm.conf.

Try changing these values, and use ps to see the processes which Apache starts.

File layout
We've already started making decisions about how our Apache server will be laid out. Let's
consolidate this now.

Suggested directory layout:

• Binaries and supporting files: /opt/apache

• Default web site: /var/www/htdocs (we can eventually remove this if we don't want to use it)

• Default cgi-bin: /var/www/cgi-bin (ditto as for the htdocs directory)

• Log files: /var/log/apache (e.g. access_log, error_log)

• Process file: /var/run/apache

We're going to use a separate layout for each virtual host (to be covered later).

Although we have an apache user and group, they shouldn't own the Apache executables: these
must start as root to run on port 80; so if someone cracked the apache user account and replaced the
httpd binary with a Trojan'ed version, the next time httpd runs it would run the Trojan code as root.

Summary of filesystem layout

Path User:group ownership Directory permissions File Permissions

/opt/apache root:root 755 644

/opt/apache/bin root:root u+x -

/opt/apache/build/*.sh root:root - u+x

18

Path User:group ownership Directory permissions File Permissions

/opt/apache/conf root:root 700 -

/var/log/apache root:root 700 -

/var/run/apache root:root 700 -

/var/www/htdocs root:root 755 -

/var/www/cgi-bin root:root 755 -

Here are the commands to implement these settings:

chown -R root:root /opt/apache

find /opt/apache -type d | xargs chmod 755

find /opt/apache -type f | xargs chmod 644

find /opt/apache/bin -type f | xargs chmod u+x

chmod u+x /opt/apache/build/*.sh

chmod 700 /opt/apache/conf

chown root:root /var/log/apache

chmod 700 /var/log/apache

chown root:root /var/run/apache

chmod 700 /var/run/apache

chown root:root /var/www/htdocs

chmod 755 /var/www/htdocs

chown root:root /var/www/cgi-bin

chmod 755 /var/www/cgi-bin

Logging
[To enable logging, the log_config module has to be loaded first.]

Apache has two separate logs:

1. Error log
The first stop for diagnosing errors with the server; by default will also contain CGI error
output. Example message:

[Wed Oct 11 14:32:52 2000] [error] [client 127.0.0.1] client
denied by server configuration: /opt/apache/htdocs/test

Date and time of the message
Type of message
IP address of client which triggered the error

19

Error message

The level of logging is set in Apache config. using the LogLevel directive. The possible
settings are (in order of decreasing significance):

emerg Emergencies - system is unusable. "Child cannot open lock file. Exiting"
alert Action must be taken immediately. "getpwuid: couldn't determine user name from
uid"
crit Critical Conditions. "socket: Failed to get a socket, exiting child"
error Error conditions. "Premature end of script headers"
warn Warning conditions. "child process 1234 did not exit, sending another SIGHUP"
notice Normal but significant condition. "httpd: caught SIGBUS, attempting to dump
core in ..."
info Informational. "Server seems busy, (you may need to increase StartServers, or
Min/MaxSpareServers)..."
debug Debug-level messages "Opening config file ..."

Setting the LogLevel tells Apache to log all messages of that severity or higher. Setting the
LogLevel to crit, for example, will report emerg, alert and crit messages. The standard
setting is error.

The log is written to the file specified by the ErrorLog directive, which specifies the path for
the log file, e.g. ErrorLog /var/log/apache/error_log

2. Access log
This logs requests made to the server. It is set up by defining two directives:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\"
\"%{User-Agent}i\"" combined
CustomLog /var/log/apache/access_log combined

Here I am using a standard log format commonly known as "combined". Note that you can
reference any request header using the %{Header}i syntax. You can also record response
headers with %{Header}o.

%>s is the status sent in the response (e.g. 200, 404, 302). If you specify %>s, the final
status is recorded; if you specify %<s, the initial status message sent to the request is
recorded.

Adding logging configuration

Putting this together for our setting gives us the following extra lines for httpd.conf:

load shared modules

LoadModule log_config_module modules/mod_log_config.so

error log

LogLevel info

ErrorLog "/var/log/apache/error_log"

20

<IfModule log_config_module>

access log

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\"
\"%{User-Agent}i\"" combined

CustomLog "/var/log/apache/access_log" combined
</IfModule>

Note I sneaked in a directive to load a shared module here (mod_log_config.so). This is necessary
before we can start using the directives which that module makes available in our config..

I also put the directives which depend on this module inside a conditional <IfModule> directive.
This means that if we decide to turn off this module at some point, the directives relating to it are
ignored. This makes the config. file more stable, and also makes it easier to track dependencies
between modules and directives.

Log rotation using rotatelogs and pipes

Apache comes with a utility for rotating logs called rotatelogs. You can specify that this be used in
the CustomLog directive by specifying a pipe (|) for the CustomLog:

CustomLog "|/opt/apache/bin/rotatelogs -l
/var/log/apache/access_log-%Y-%m-%d 86400" common

(This command rotates the access log every 24 hours, and calls the old logfile access_log suffixed
with the full year, month and day; 86400 = 24 hours = 60 * 60 * 24 seconds; the -l option forces the
server to use local time for the logs rather than GMT)

It is also possible to rotate the logs based on size (replace the time specification with a file size, e.g.
5M)

There is another log rotation script called cronolog (http://cronolog.org/), which offers finer-grained
control over logging, but which can be used in the same way as rotatelogs (i.e. via a pipe).

Log rotation using logrotate

logrotate is another solution available with most Linux distributions. It works externally to the
programs it is rotating for: you don't configure it inside httpd.conf, but configure logrotate itself
instead, telling it which logs to rotate. logrotate can be used to rotate logs for any application, and
runs as a daemon. Here's a sample configuration script for rotating our Apache logs (adapted from
Ubuntu's logrotate configuration for Apache):

/var/log/apache/*_log {

 # rotate on a daily basis

 daily

 # don't return an error if there are no *_log files

 missingok

 # keep 30 copies of logs

 rotate 30

21

 # compress rotated logs

 compress

 # wait for another rotation before compressing logs

 delaycompress

 # create new log files with mode 600, owner root, and group root

 create 600 root root

 sharedscripts

 # script to run after rotating logs

 postrotate

 if [-f /var/run/apache/httpd.pid]; then

 /opt/apache/bin/apachectl graceful > /dev/null

 fi

 endscript

}

Here's a good reference for creating your own logrotation scripts, and what the directives mean:

http://www-uxsup.csx.cam.ac.uk/~jw35/courses/apache/html/x2167.html

The location to put the configuration file into depends on how the logrotate daemon is configured
on the machine; in the case of Fedora, the above configuration script would be placed in:

/etc/logrotate.d/apache

You can test your logrotate script manually using:

logrotate -f /etc/logrotate.d/apache

Custom log rotation scripts

It's pretty easy to write your own log rotation script which works offline. This is more efficient than
using piped logs, as it only requires a short-lived process which runs occasionally to archive the log
files (unlike rotatelogs, which runs continuously with Apache). However, it may be a less
sustainable choice than a dedicated application like logrotate (see earlier), as you have to maintain
the script yourself, though it should be easier to setup.

Here's a sample script we could use with cron (as the root user) to rotate our logs on a daily basis:

#!/usr/bin/python

import time

from subprocess import call

from os import rename

suffix = '.' + time.strftime('%Y-%m-%d')

access_log = '/var/log/apache/access_log'

archived_access_log = access_log + suffix

22

http://www-uxsup.csx.cam.ac.uk/~jw35/courses/apache/html/x2167.html

error_log = '/var/log/apache/error_log'

archived_error_log = error_log + suffix

rename(access_log, archived_access_log)

rename(error_log, archived_error_log)

do a graceful restart

call(['/opt/apache/bin/apachectl', 'graceful'])

While saving some CPU cycles, this approach also has the advantage of keeping log file names
simple (just access_log and error_log), as logrotate does. This makes configuration easier later on
(e.g. if we want multiple virtual hosts to write to the same access_log, we can just specify the
filename access_log).

The old log files are renamed by appending a date suffix onto the end of the original file name. You
could refine this by removing really old logs, or zipping the archived logs.

[NB there appears to be a bug with the graceful restart command for Apache 2.2 (it is recorded on
the Apache bug tracker), which causes an error to appear in the logs when running the above script.
However, this appears to have no effect on the server's operation.]

Configuring file serving

Safe defaults for serving directories

By default, Apache will serve any file it can access. This could be problematic if a mis-
configuration made it possible for Apache to serve critical system files. We can set the default to
deny access to the whole filesystem by default:

<Directory />

Order Deny,Allow

Deny from all

</Directory>

The <Directory> directive allows you to group a set of options which apply to a specified directory
in the filesystem (and all its sub-directories). In our case, we are applying it to / (the root of the
whole filesystem).

The Order directive is part of the host based authentication module (mod_authz_host). It specifies
the order in which Deny and Allow directives are applied. In this case, Deny directives are applied
first, then Allow directives. Access is allowed by default. Any client which does not match a Deny
directive or does match an Allow directive will be allowed access to the directory.

The Deny directive specifies that all hosts are denied access. It is possible to restrict access using IP
addresses, partial IP addresses, network/netmask pairs, or network/nnn CIDR specification, e.g.

Allow from 82.68.194.150

Allow from 10.1

23

http://httpd.apache.org/docs/2.2/mod/mod_authz_host.html#allow
http://httpd.apache.org/docs/2.2/mod/mod_authz_host.html#deny

Allow from 10.1.0.0/255.255.0.0

Allow from 10.1.0.0/16

You can also control access by environment variable using:

Allow from env=access_granted

Using setenvif, you could set environment variables based on arbitrary features of the request (e.g.
particular user agents, referer, non-standard headers), which could then be used to grant/deny
access.

We now need to allow access to the default website directory so we can serve files from it:

<Directory /var/www/htdocs>

Order Allow,Deny

Allow from all

</Directory>

We need to add these directives, plus the LoadModule statement to pull in the module which
controls authentication, to httpd.conf:

...

LoadModule authz_host_module modules/mod_authz_host.so

...

<Directory />

Order Deny,Allow

Deny from all

</Directory>

<Directory /var/www/htdocs>

Order Allow,Deny

Allow from all

</Directory>

We now have enough in place to test whether we can serve files. All we need to do now is:

1. Change to the root user

2. Create a file in /var/www/htdocs called index.html (any content)

3. Restart Apache

4. Go to http://localhost/index.html: you should see your content

Options on directories

The Options directive covers file access configuration for individual <Directory> directives. It

24

http://localhost/index.html

allows you to govern features like execution of files, following symlinks, and showing indexes of
files in a directory. Here are the options available:

• ExecCGI: CGI scripts can be executed in the directory

• FollowSymLinks: symlinks in the directory can be followed to their target, even if outside
the webserver's document tree (NB this one is needed for mod_rewrite, which is very
important for URL rewriting and used by many applications for Search Engine Optimisation
of URLs)

• SymLinksIfOwnerMatch: only follow symlinks if the owner of the link is the same as the
owner of the file pointed to

• Includes: allows server-side includes

• IncludeNOEXEC: allows server-side includes, but prevents the exec command being used
in SSIs

• Indexes: when on, the server will generate an index of files in a directory if no default
resource (liked index.html) is specified

• MultiViews: allows content negotiation (i.e. serve files based on user's language preference)

• All: all of the above are enabled except MultiViews

• None: none of the above are enabled

To enable or disable an option, use this syntax:

 Options +FollowSymLinks

 Options -Indexes +ExecCGI

To see why symlinks are important, try this:

1. ln -s /etc/passwd /var/www/htdocs/passwd

2. Go to http://localhost/passwd

This isn't too dangerous here, as we need to be root to create the symlink (no one else can write into
/var/www/htdocs/). But if we had configured the site to allow access by non-root users who can
read /etc/passwd, they would be able to do the same thing for their own website.

To prevent this kind of thing, we should set Options None for the directive which covers the
root of the filesystem:

<Directory />

 Order Deny,Allow

 Deny from all

 Options None

</Directory>

25

http://localhost/passwd

This now becomes the default setting for any directories below the root of the filesystem, including
/var/www/htdocs.

AllowOverride: overriding server configuration in a directory

This directive governs whether parts of the server configuration can be overridden using files inside
the webserver document tree. For example, we may allow users to specify their own authorisation
directives in these files, to govern which hosts, users, and or groups can access their directories.
Configuration is overridden in .htaccess files.

The following options specify which parts of the configuration can be overridden in .htaccess files:

Option Controls overriding of this type of directive...

AuthConfig Authorisation, e.g. Require, AuthUserFile, AuthType

FileInfo Document type, e.g. Header, ErrorDocument, RewriteBase

Indexes Directory indexing, e.g. IndexOptions, DirectoryIndex, DefaultIcons

Limit Host access, e.g. Allow, Deny, Order

Option The Options directive

All Any directive which can be overridden in .htaccess files can be overridden in
this directory (i.e. all of the above)

None None of the above; .htaccess files are ignored

The Options override is probably the most confusing: if AllowOverride Options is specified, then
the default Options setting for the directory can be overridden by a .htaccess file in that directory!

You can specify which directive types can be overridden like so:

AllowOverride AuthConfig Limit

In our case, for the root directory, we don't want to allow anything to be overridden:

<Directory />

 Order Deny,Allow

 Deny from all

 AllowOverride None

 Options None

</Directory>

Hiding important files

By default, Apache will serve any file requested which is within a visible directory. This includes
.htaccess files (discussed above) which may contain important configuration information; plus it
could contain backup files (commonly ending with .bak or starting with ~, depending on the editor
which produced them).

26

Try adding a .htaccess file to /var/www/htdocs, then fetch it in your web browser. It should work
OK, which isn't what we want.

We can globally turn off access to these files like this by putting a FilesMatch directive at the top
level directive of our httpd.conf file:

<FilesMatch "(^\.ht|~$|\.bak$)">

 Order Deny,Allow

 Deny from All

</FilesMatch>

This directive can also be applied to individual virtual hosts or directories, and can be set in
.htaccess files if AllowOverride is set to All for that directory.

Now try getting your .htaccess file. It should be protected.

There is also a DirectoryMatch directive, which can be used to prevent serving of directories whose
name matches a specified regular expression.

Setting the default home page

One useful thing we can do immediately is define the default document to serve when the root of a
directory is requested, e.g. http://localhost/. We do this with the DirectoryIndex directive, which
needs mod_dir to be loaded:

LoadModule dir_module modules/mod_dir.so

<IfModule dir_module>

 DirectoryIndex index.html

</IfModule>

(Test it at http://localhost/)

When we add other types of file (e.g. PHP scripts), we can add these onto the DirectoryIndex to
make them available as the default index page.

Setting the right MIME types

When you fetch index.html, you'll probably notice that it turns up as plain text. If you check the
response headers when you fetch index.html, you'll notice the resource is delivered with the MIME
type text/plain. However, we would expect any .html file to be treated as text/html. This is because
we haven't configured MIME handling. This facility is provided by mod_mime, and activated like
this:

LoadModule mime_module modules/mod_mime.so

mime types

27

http://localhost/

DefaultType text/plain

<IfModule mime_module>

 # location of the MIME types configuration file

 TypesConfig conf/mime.types

</IfModule>

The mime.types file maps file suffixes (.html, .php etc.) to MIME types (a MIME type just
describes the kind of content a file contains, and is used by the client to determine how to handle the
file, e.g. display in the browser, download, display in a helper application). Note that the
TypesConfig directive is implicit and doesn't have to be specified as we have here, and it will still
work. But it's worth being explicit, again to remind us of the dependency between the module and
the mime.types file in the conf directory.

There is another MIME module called mod_mime_magic, which uses hints in the file to determine
its MIME type, as well as the filename suffix. This could be helpful in cases where you have many
unusual and esoteric file types, or have files without suffixes or incorrect suffixes.

It is also possible to add your own custom MIME types on top of the default ones using mod_mime.

Compressing content sent to the client

This is a useful option, and one which can reduce network bandwidth usage. It enables Apache to
compress content sent to clients that are able to handle such compressed content (i.e. most modern
browsers).

1. Enable mod_deflate:

LoadModule deflate_module modules/mod_deflate.so

2. Configure compression for common content types:

AddOutputFilterByType DEFLATE text/html text/plain text/xml

It is possible to compress other types of content, but configuration is more complex and requires
browser sniffing (see http://httpd.apache.org/docs/2.2/mod/mod_deflate.html). This configuration is
straightforward and will work with all browsers.

NB Apache will only send compressed content to clients whose requests include the following
header:

Accept-Encoding: gzip,deflate

We can test this by requesting our index.html file, then checking the response headers which come
back from Apache. They should include:

Content-Encoding: gzip

Hiding the server's identity
The response we get back when we request a resource on the server gives away some information
about the server. Namely, the response contains a Server header which looks like this:

Server: Apache/2.2.2 (Unix)

28

http://httpd.apache.org/docs/2.2/mod/mod_deflate.html

We can see this using the LiveHTTPHeaders in Firefox.

An attacker could use this information to potentially determine vulnerabilities in the server, based
on the server type, version, and underlying operating system. There are two simple things we can do
to hide this information in httpd.conf:

this line controls whether Apache adds information about

itself to the end of server-generated documents

(e.g. directory index pages, error messages);

Off is the default, but let's make it explicit

ServerSignature Off

the tokens displayed in response headers;

this sets it to just show the server name (Apache);

this can only be set at the server level (not per host)

ServerTokens ProductOnly

If you are really paranoid, and want to disguise the fact you are using Apache at all, you can change
the Server header in the response to whatever you like using the mod_security module (we're not
going to bother):

ServerTokens Full

SecServerSignature "Elliot's Miraculous Web Server"

You can get mod_security from:

http://www.modsecurity.org/projects/modsecurity/apache/index.html

It's very easy to install (using the instructions for compiling new Apache shared modules - see
earlier).

However, there are still certain aspects of the behaviour of the server's networking stack and the
way it formats responses which can enable the server's real identity to be discovered.

chrooting
Chroot'ing Apache is another way to add more security, by constricting Apache to running in a
specific directory. No files outside the chroot directory are accessible to Apache once running.

The traditional method for chroot'ing Apache is complex; however, mod_chroot is an easier way to
chroot Apache which keep things simple: http://core.segfault.pl/~hobbit/mod_chroot/

29

http://core.segfault.pl/~hobbit/mod_chroot/

CGI
"The Common Gateway Interface (CGI) is a standard for interfacing external applications with
information servers, such as HTTP or Web servers. A plain HTML document that the Web daemon
retrieves is static, which means it exists in a constant state: a text file that doesn't change. A CGI
program, on the other hand, is executed in real-time, so that it can output dynamic information."
(from http://hoohoo.ncsa.uiuc.edu/cgi/intro.html)

Apache and CGI
CGI scripts run as processes external to Apache, and run as the effective Apache user. Each time a
CGI script is requested by a client, a new process is fired up to handle it. (This is fairly inefficient,
and several solutions exist to alleviate this, as described later. It also means that a poorly-written
CGI script can hog memory and CPU cycles: again, the solutions described later go some way to
helping with this.)

Common practice is to put CGI scripts into a dedicated directory. This is the most secure way of
hosting scripts, but the least flexible from the user's perspective.

1. Create a separate cgi-bin folder in /var/www/cgi-bin

2. chmod 755 /var/www/cgi-bin

3. Setup CGI config. for that directory in /opt/apache/conf/httpd.conf:

LoadModule cgi_module modules/mod_cgi.so

<Directory /var/www/cgi-bin>
 Order Allow,Deny
 Allow from all
</Directory>

4. We need to load mod_alias so we can alias a directory which holds CGI scripts:

LoadModule alias_module modules/mod_alias.so

5. Create an alias for the cgi-bin directory:

ScriptAlias /cgi-bin/ /var/www/cgi-bin/

This directive means that any file put into the /var/www/cgi-bin/ directory is treated as a
CGI script; also that any URL of this form:

http://localhost/cgi-bin/ filename

is mapped onto a script called filename in the /var/www/cgi-bin/ directory.

6. Create a test CGI script (I'm using Python) in the cgi-bin directory:

#!/usr/bin/python
print "Content-Type: text/plain"
print "\n"
print "Hello world"

30

http://localhost/cgi-bin/filename
http://hoohoo.ncsa.uiuc.edu/cgi/intro.html

7. Make the script executable:

chmod 755 hello.py

8. Try accessing it at: http://localhost/cgi-bin/hello.py

It is safe to use ScriptAlias where we are setting up a directory to execute CGI scripts which is
outside the document root for the server (i.e. the directory is not available via any means other than
through the ScriptAlias). However, where we want to allow CGI execution inside a directory under
the document root, it is better to use the <Directory> directive instead.

For example, if we wanted to allow Python CGI scripts under /var/www/htdocs, we could enable
them like this:

<Directory /var/www/htdocs>

 Order Allow,Deny

 Allow from all

 Options ExecCGI

 AddHandler cgi-script .py

</Directory>

Improving security with suEXEC and FastCGI
suEXEC and FastCGI are two alternative mechanisms for adding extra security and stability to CGI
script execution.

• suEXEC only really makes sense in a shared hosting environment with virtual hosts. It
allows execution of CGI scripts as a user different from the Apache effective user. To use it,
Apache must be compiled with suEXEC support (it isn't compiled in by default). Once in
place, a virtual host can be configured to run any CGI scripts under a different user and
group, as specified by the SuexecUserGroup directory (only allowed inside a VirtualHost
directive). suEXEC puts a stringent series of checks in place every time a CGI script is
requested, such as checking whether the suEXEC user exists, whether they have permissions
to execute the script, permissions on the directory containing the script, ownership of the
script, and so on.

• FastCGI creates a separate process for CGI scripts, and allows requests for specified
resources to be routed to that process. Because the FastCGI process is persistent across
requests (so multiple requests for a CGI script can be handled by a single process), it is more
efficient than standard CGI (close to Apache module speeds). In addition, FastCGI can also
be configured to run under suEXEC, so the external FastCGI process runs as a user different
from the Apache effective user.

The only downside to FastCGI is that it is not in active development, and is widely
considered "abandoned" (for example, the README has not been updated for 2 years, and
the current version is not compatible with Apache 2.2 without manual patching of the
source).

31

SSL
SSL is a protocol for communicating securely between a client and a server. Originally developed to
secure HTTP communications, it has been extended to cover SMTP, IMAP and other protocols.

SSL is based around Public Key Cryptography. In this type of encryption, there isn't a single key (as
there is in symmetrical encryption); there are two keys, one public and one private. Anything
encrypted with the public key can be decrypted only if the private key is known; and anything
encrypted with the private key can be decrypted only with the public key.

SSL works in two phases:

1. Handshake
The server sends the client a digital certificate, which contains its public key. The certificate
can either be signed by:

1. The owner of the certificate (a.k.a. self-signed, shouldn't be trusted)

2. A private certificate authority (e.g. an organisation might create a certificate for use on
its intranet)

3. A public certificate authority (i.e. an organisation which exists only to sign certificates
and verify identities)

A certificate received by a client may have been signed directly by one of the above, or by
an intermediary between the certificate's owner and a certificate authority. The client
verifies the certificate by following the signing chain of the certificate back to its root
authority, and makes a decision to either trust or reject the certificate. Optionally, the server
may require that the client send its own certificate before it will allow communication.

If the certificate is trusted, the client and the server then negotiate the encryption protocol to
use and a set of symmetrical keys. Symmetrical keys are faster than using public key
encryption.

2. Data exchange
The client and server exchange data using the agreed symmetrical key.

There is a good document explaining the ins and outs of SSL and Apache at:

http://www.modssl.org/docs/2.8/

Creating a self-signed certificate
To generate a self-signed SSL certificate, you will need openssl installed.

Then follow these steps:

1. Generate the server's private key; we'll use a 1024-bit key using the RSA algorithm:

cd /opt/apache/conf
mkdir ssl
cd ssl
openssl genrsa -out server.key 1024

2. Generate a certificate-signing request:

openssl req -new -key server.key -out server.csr

32

Fill in the required information. The important fields are:

Country Name (2 letter code) [GB]:GB

State or Province Name (full name) []:.

Locality Name (eg, city) [Newbury]:Birmingham

Organization Name (eg, company) [My Company Ltd]:mooch labs

Organizational Unit Name (eg, section) []:.

Common Name (eg, your name or your server's hostname)
[]:localhost

Email Address []:.

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:.

An optional company name []:.

The really important one is the Common Name: this must match the domain name which
will serve the SSL site; otherwise connecting clients will get a prompt about a mismatch
between the certificate's host name and the actual host name of the server.

Note that we left the password blank. If we don't do this, Apache will prompt you for the
certificate password each time you start the server.

4. Create a self-signed certificate:

openssl x509 -req -days 3650 -in server.csr -signkey server.key -out server.crt

5. rm server.csr
(we don't need it any more)

6. You can view the certificate using this command:

openssl x509 -text -in server.crt

Configuring Apache to use SSL
We're going to put our SSL keys into a separate directory /opt/apache/conf/ssl, and the configuration
in a separate file called /opt/apache/conf/ssl.conf.

1. Compile mod_ssl statically into the server, or load it as a shared module; we compiled the
shared module earlier, so we load it with:

LoadModule ssl_module modules/mod_ssl.so

2. We're also going to need the SetEnv module for some of the configuration we need to do
later:

LoadModule setenvif_module modules/mod_setenvif.so

3. Make sure the private and public keys are in the right directory:

33

ls /opt/apache/conf/ssl

You should see server.key and server.crt.

4. Set permissions on the directory:

chown root.root /opt/apache/conf/ssl
chmod 700 /opt/apache/conf/ssl

5. Set permissions on the certificate and the key:

chmod 600 /opt/apache/conf/ssl/server.*

6. Make a new file to hold Apache's SSL configuration:

touch /opt/apache/conf/ssl.conf
chmod 600 /opt/apache/conf/ssl.conf

7. Make a directory to store the SSL session cache (this improves performance as it caches
session data and prevents unnecessary handshakes, e.g. if a single client creates multiple
parallel connections to the server):

mkdir /opt/apache/cache
chown root.root /opt/apache/cache
chmod 700 /opt/apache/cache

8. Put together a minimal SSL configuration in ssl.conf:

Listen 443
SSLCertificateFile conf/ssl/server.crt
SSLCertificateKeyFile conf/ssl/server.key
switch off SSLv2 (which is flawed)
SSLProtocol All -SSLv2
only support high-grade encryption
SSLCipherSuite ALL:!EXP:!NULL:!ADH:!LOW
session cache: type:location(max_size)
SSLSessionCache shmcb:/opt/apache/cache/sslcache(51200)
SSLSessionCacheTimeout 300

configuration to handle broken SSL implementation
in IE
SetEnvIf User-Agent ".*MSIE.*" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0

configure the default site to be available over SSL
as well as standard HTTP
<VirtualHost localhost:443>
 SSLEngine on
 ServerName localhost:443
 DocumentRoot /var/www/htdocs
 CustomLog /var/log/apache/access_log combined
 ErrorLog /var/log/apache/error_log
</VirtualHost>

34

9. Pull the configuration file into the main httpd.conf file:

Include /opt/apache/conf/ssl.conf

10. Test at:

https://localhost/

Note that you will be prompted to accept the certificate, as it is self-signed and cannot be
traced back to a recognised certificate authority.

35

https://localhost/

Adding PHP

Pre-installation
There are several choices to make:

1. Which version: 4 or 5 or both?
PHP 5 is stable, and superior to version 4 in its support for object-oriented programming. It
is also possible to run PHP 5 in version 4 compatibility mode, which should provide near-
perfect support for PHP 4 scripts.

An alternative is to install both, and select the version to use as follows:

1. per-host (by setting an AddHandler directive for a whole virtual host which specifies the
PHP version to use)

2. per-directory (by setting an AddHandler directive inside a directory, either in a .htaccess
file or in httpd.conf)

3. per-file (by setting a handler for files with a specific file suffix, e.g. .php4, in httpd.conf
or .htaccess)

We are going to install PHP 5.

2. Do you want web, command line, and/or GUI?
If you don't need command line or GUI support, leave them out when compiling PHP.

3. Will it be used by untrusted users?
In situations where the server will only be used by trusted users, PHP can safely be run as a
module. In this situation, PHP runs inside the main server process, under the Apache
effective user. Where some untrusted users may be using the server to run PHP scripts, a
safer setup is to use standard CGI, CGI with an execution wrapper like suEXEC, or PHP
under FastCGI. This isolates the PHP process from Apache and is safer; it also means that
Apache is potentially faster, as it isn't also running PHP, so static file delivery may be
speeded up.

We are going to install as a module, as this is the simplest approach, and good for most
general purpose use.

Preparation
You will need the following pieces of software to compile PHP on Ubuntu:

• flex

• bison

• autoconf

• MySQL

• MySQL-dev (libmysqlclient14-dev on Ubuntu)

• libjpeg-dev, libpng-dev, libxpm-dev, libwmf-dev, libungif, libfreetype6-dev etc. (to get
support for different image formats and truetype fonts in GD)

36

Compiling PHP
Download from php.net

Compare with the md5sum (as we did for Apache)

Unpack

Connect to the unpacked directory

To compile PHP, we need to reference a couple of graphics library files. On Ubuntu, this isn't a
problem; but on Fedora (at least in version 5), the graphics libraries have non-standard names which
cause compilation to fail. We can fix this by symlinking the real graphics libraries to correctly-
named files like this:

ln -s /usr/lib/libjpeg.so.62 /usr/lib/libjpeg.so

ln -s /usr/lib/libXpm.so.4 /usr/lib/libXpm.so

Run the configure script like this:

./configure --prefix=/opt/apache/php --with-apxs2=/opt/apache/bin/apxs --with-config-file-
path=/opt/apache/conf --enable-memory-limit --with-pear=/opt/apache/php/pear --without-
pgsql --with-mysql=shared --with-mysqli=shared --with-pdo-mysql=shared --with-gd=shared
--with-zlib=shared --with-freetype-dir=/usr/lib --with-xpm-dir=/usr/lib --with-jpeg-dir=/usr/lib
--with-gettext=/usr/lib

The options I've used here specify the following:

--prefix = where to install

--with-apxs2 = location of the apxs binary (for installing the PHP module into Apache)

--with-config-file-path = where the php.ini file will be

--enable-memory-limit = compile with memory limit support

--with-pear = install pear (packaging mechanism for PHP extensions)

--without-pgsql = disable support for PostgreSQL

--with-EXTENSION=shared = enable the following extensions as shared

mysql = include support for MySQL

mysqli = improved MySQL extension

pdo-mysql = enable PDO support for MySQL (PDO is a new database interface in PHP 5)

zlib = enable support for the zlib extension (stream compression support)

gd = enable PHP GD support (for image manipulation and creation)

--with-freetype-dir, --with-xpm-dir, --with-jpeg-dir = path to Freetype/XPM/JPEG handling
libraries (NB compiling against Freetype is the easiest way to enable PHP font-rendering functions
within GD)

--with-gettext = location of the GNU gettext libraries; useful for internationalisation

37

Note that there is a default set of extensions installed with PHP which is fairly sane, so we will
leave them as is. If you want to turn any of them off, use:

--disable-EXTENSION

OR

--without-EXTENSION

(use ./configure --help to work out which you'll need for a given extension)

Then run these commands to compile and install:

make

make install

Next we need to copy the recommended PHP config. file to the location where we told our
compiled PHP it would be:

cp php.ini-recommended /opt/apache/conf/php.ini
chown root:root /opt/apache/conf/php.ini
chmod 600 /opt/apache/conf/php.ini

When we ran make install, it added this line to /opt/apache/conf/httpd.conf:

LoadModule php5_module modules/libphp5.so

(If you recompile PHP and do make install, it may add another line like this to httpd.conf,
which will break Apache. You can fix it by just removing the repeated line.)

Tell Apache which files to treat as PHP scripts:

AddHandler application/x-httpd-php .php

And to treat index.php as a possible default home page when a website root is requested:

DirectoryIndex index.html index.php

To test our installation:

1. cd /var/www/htdocs

2. create a new file called info.php with this content:

<?php

phpinfo();

?>

3. Test at http://localhost/info.php

You should see a screen with information about your PHP settings, loaded modules, etc.

38

http://localhost/info.php

A note on SELinux

If you follow these instructions on a default Fedora install, you may find that you are unable to
restart Apache once you've installed PHP, and get an error something like:

Cannot restore segment prot after reloc: Permission denied

This can be caused if you have SELinux enabled, which is the default on Fedora. (On Ubuntu, it
isn't a problem (by default).)

The easiest way round this (I'm not going into the intricacies of SELinux policies here!) is to disable
SELinux in /etc/selinux/config, by setting:

SELINUX=disabled

Removing PHP
If for any reason you want to junk your installation, you can remove all traces of PHP like this:

1. Stop Apache

2. rm /opt/apache/php

3. rm /opt/apache/modules/libphp5.so

4. Delete or comment out this line:

LoadModule php5_module modules/libphp5.so

in /opt/apache/conf/httpd.conf

5. The lines which set up the PHP handler and specify index.php as a DirectoryIndex can be
left in, as they won't affect Apache's operation; remove them if you really want to get rid of
PHP altogether

6. You can leave /opt/apache/conf/php.ini where it is: it won't affect Apache's operation.

7. Start Apache

NB this is one of the advantages of not spreading PHP and PEAR across the filesystem: it makes it
easy to completely strip it out of the server. I found this really useful when experimenting with
different configure switches.

Extensions
Compiling extensions as static or shared is similar to Apache.

By default, the php.ini file doesn't load extensions; you have to tell it where they are and which
ones to load.

Edit php.ini:

1. Set the directory containing PHP extension .so files:

extension_dir = /opt/apache/php/lib/php/extensions/no-debug-
non-zts-20050922

2. Add one directive for each extension:

extension=mysql.so

extension=mysqli.so

39

extension=pdo_mysql.so

extension=gd.so

extension=zlib.so

If you want to check the extensions which have been compiled in as shared, have a look in the
extension_dir (defined above). You should see a .so file for each shared module.

You can also see a list of all extensions by doing:

/opt/apache/php/bin/php -m

though this doesn't discriminate between shared and static extensions.

Recompiling PHP

1. Adding a new extension

We can compile new extensions into our PHP installation using the phpize tool. This is similar to
apxs, but intended for installing PHP extensions. We'll install the mbstring extension this way:

1. Go to the PHP source tree

2. cd ext/mbstring

3. /opt/apache/php/bin/phpize
This prepares the source in the current directory for compilation as a PHP extension

4. ./configure --with-php-config=/opt/apache/php/bin/php-config

5. make

6. make install

7. Edit /opt/apache/conf/php.ini and add this line:

extension=mbstring.so

8. Check the extension is loaded using:

/opt/apache/php/bin/php -m

or by using phpinfo().

2. Recompiling the PHP binary

If we re-run ./configure at the top of the source tree with extra options, the PHP binary will be
reconfigured. As far as I can tell, it's best to do a "make clean" to clean the previously-compiled
version completely out of the build tree (NB this doesn't affect the installed PHP, just the build tree).
We can then do the standard make/make install to update the PHP binary inside our Apache
installation.

Configuring PHP
We've already checked our PHP configuration using the phpinfo() command.

The config. file consists of a bunch of directives; if the directive is commented with a semi-colon,

40

the default value shown is set.

Now we are going to have a look at the configuration file and systematically cut it down and tighten
it up.

1. Make a copy of the file (before we start butchering it).

2. Remove the big blocks of comments. This just makes the config. file a bit easier to read.

3. Delete any sections in the config. file which don't apply to our setup (i.e. for configuring
extensions we're not using). Start at the end of the file and remove any sections headed []
which aren't required.

4. Add pear to the include path:

include_path = ".:/php/includes:/opt/apache/php/pear"

This ensures that if we install any PEAR extensions, they are available to our PHP scripts.

5. Starting from the top and working down:

i. safe_mode: When safe_mode is on, PHP does a check when a script calls a function
which tries to access a file on the filesystem. If the owner of the script and the owner
of the file are different, PHP does not allow the operation. (NB this can be relaxed
using the safe_mode_gid directive.)

ii. expose_php: turn it to "Off" if you don't want PHP to add itself to the Apache
response headers.

iii. memory_limit: 8M is quite low, and may cause problems with certain scripts; a
setting of 64M is more realistic.

iv. display_errors: Leave this off on a production server and log errors to a file instead.
You can turn it on in individual scripts if you need it with:

ini_set("display_errors", 1);

You should also make sure display_startup_errors is set to Off.

v. error_log: log errors into a file, rather than displaying them in the response:

error_log = "/var/log/php/php_log"

NB log_errors must be set to On for this to work.

vi. register_globals: set to Off. Do not turn it on: it is very dangerous and can open
vulnerabilities in poorly-written scripts.

vii. allow_url_fopen: set to Off. If On, this allows PHP scripts to open files on remote
servers via ftp or http.

viii. magic_quotes_gpc: set this to Off. It is confusing if it's turned on, as it automatically
escapes quotes in POST data.

ix. file_uploads: turn on if you want to globally allow file uploads via PHP scripts.

x. enable_dl: turn this Off; if On, it allows users to load their own extensions from
within a PHP script.

xi. sendmail_path: set the path to the sendmail binary if it is in a non-standard location,

41

or not on the apache user's path

xii. session.save_path: the path to the directory into which session data is saved; set it to
/var/www/sessions

xiii. session.referer_check: set to the domain name for the Apache server; this ensures
that session cookies are only accepted if the client's referer contains this string; in our
case, we can set it to localhost.

As PHP runs as the apache user, and we have tightened access to /var/log/apache, we will setup a
separate log directory for PHP. This directory will be writeable by the apache user (/var/log/apache
isn't, for security reasons, and rather than make /var/log/apache writeable, it's better to put PHP logs
into a different, less-secure directory):

mkdir /var/log/php

chown apache.apache /var/log/php

chmod 700 /var/log/php

(We could also apply log rotation to these logs, as we did for the Apache logs.)

We also need a separate directory to save session data:

mkdir /var/www/sessions

chown apache.apache /var/www/sessions

chmod 700 /var/www/sessions

Testing PHP + MySQL
(I'm assuming you have a MySQL setup on your machine. I'm not going to explain how to do that
:).)

First we need a database, a table, and some data:

1. Start the mysql command line client in a terminal

2. At the mysql prompt:

use test;

create table people (id INT AUTO_INCREMENT, name VARCHAR(255),
PRIMARY KEY(id));

insert into people values(1, 'Elliot Smith');

insert into people values(2, 'Mickey Mouse');

exit;

3. Write a PHP script to access our MySQL database (not secure - root has no password in my
example!):

<?php

mysql_connect('localhost', 'root');

mysql_select_db('test');

$result = mysql_query('SELECT * FROM people');

42

while($row = mysql_fetch_assoc($result)) {

 echo $row['name'] . '
';

}

?>

And a short script using PDO's MySQL functionality:

<?php

$dbh = new PDO('mysql:host=localhost;dbname=test', 'root');

foreach ($dbh->query('SELECT * FROM people') as $row) {

 echo $row['name'] . '
';

}

$dbh = null;

?>

Testing PHP's GD extension
We can test the GD PHP extension with a short script. It's worth doing this, as GD relies on several
other installed libraries, and it's best to check they are being referenced correctly.

Create a new file in /var/www/htdocs/gd_test.php with this content:

<?php

$im = imagecreatetruecolor(400, 100);

$black = imagecolorallocate($im, 0, 0, 0);

$white = imagecolorallocate($im, 255, 255, 255);

$font = '/var/lib/defoma/x-ttcidfont-
conf.d/dirs/TrueType/Arial_Black.ttf';

imagefilledrectangle($im, 0, 0, 400, 100, $white);

imagettftext($im, 30, 0, 10, 40 , $black, $font, 'Hello World!');

header('Content-Type: image/png');

imagepng($im);

?>

You may need a different font path: use

locate ttf

or

43

find / -name *.ttf

to find the TrueType fonts on your system.

On Fedora, you could use:

/usr/share/fonts/bitstream-vera/Vera.ttf

for example.

Test by browsing to http://localhost/gd_test.php

44

.htaccess files
These files can be used to set local configuration for a directory (and its subdirectories). They are
commonly used to specify authentication and authorisation setup, but can also be used to set custom
handlers, rewrite rules, PHP configuration, and so on (in fact, you can set any directives enabled for
the directory, as specified by AllowOverride).

Note that any configuration you can do in a .htaccess file can also be done inside the main Apache
configuration files. If you have control over the main config. files, use them instead of doing
configuration inside .htaccess files, as it means your config. will be centralised and easier to
manage.

Setting up authentication by username and password
1. Switch to the root user

2. Allow configuration for the document root directory to be overridden in .htaccess files by
modifying httpd.conf:

<Directory /var/www/htdocs>
 AllowOverride FileInfo AuthConfig Limit
</Directory>

3. Create the directory we want to secure:

mkdir /var/www/htdocs/secure

4. Create an index.php file inside the secure directory.

5. We need to load the modules required to do user and group authentication and authorisation:

LoadModule authn_file_module modules/mod_authn_file.so
LoadModule auth_basic_module modules/mod_auth_basic.so
LoadModule authz_user_module modules/mod_authz_user.so
LoadModule authz_groupfile_module modules/mod_authz_groupfile.so

6. Create a data directory which will contain the configuration files for authentication:

mkdir /opt/apache/data
chown root:root /opt/apache/data
chmod 711 /opt/apache/data

7. Create the file with the user data using the htpasswd program:

/opt/apache/bin/htpasswd -c /opt/apache/data/passwords elliot

The -c switch tells the command where to create the passwords file; elliot is the user we are
creating. You will be prompted to enter a password then confirm it.

8. Create a .htaccess file in /var/www/htdocs/secure/.htaccess to protect the secure directory:

AuthType Basic

45

AuthName "Secure area"
AuthUserFile /opt/apache/data/passwords
Require valid-user

9. Test at http://localhost/secure/. You should be prompted for a username and password.

Authorisation by group
The above can be easily extended to do group authentication:

1. Create a groups file in /opt/apache/data/groups with this content:

administrators: elliot

2. Modify /var/www/htdocs/secure/.htaccess to authorise by group:

AuthType Basic
AuthName "Restricted Files"
AuthUserFile /opt/apache/data/passwords
AuthGroupFile /opt/apache/data/groups
Require group administrators

Rewriting URLs
To demonstrate the use of other directives in .htaccess files, let's add a rewrite rule which redirects
any request for files in the secure directory to the index page.

1. Load the rewrite module in httpd.conf:

LoadModule rewrite_module modules/mod_rewrite.so

2. Configure the secure directory for rewriting by modifying /opt/apache/conf/httpd.conf:

<Directory /var/www/htdocs/secure>
 Options SymLinksIfOwnerMatch
 AllowOverride FileInfo AuthConfig Limit
</Directory>

3. Add a rewrite directive to /var/www/htdocs/secure/.htaccess:

RewriteEngine On
RewriteRule .* index.php [L]

This maps any URL of the form http://localhost/secure/xxxxx to
http://localhost/secure/index.php.

4. Test in your browser.

There is a full guide to using mod_rewrite at:

http://httpd.apache.org/docs/2.2/misc/rewriteguide.html

46

http://localhost/secure/index.php
http://localhost/secure/

Virtual hosts
[Only about 1000 virtual hosts are possible per Apache instance using the approach detailed in this
section. Beyond this limit, it is better to use an optimised solution like mod_vhost_alias instead.]

Virtual hosting allows "Running multiple websites on a single machine".

Two methods: IP-based or name-based

1. Name-based is simplest and requires fewer IP addresses (which are a scarce resource).

2. IP-based is more complex and needs one IP address for each host. For SSL sites on different
hosts, must use IP-based hosting (can't have multiple SSL sites on a single IP address).

We're going to use name-based virtual hosts.

Our aim is to keep files related to an individual virtual host in one location reserved for that host;
any core Apache log files etc. remain in a central location. This is the layout for each host:

• /var/www/jelica.com: base path for the virtual host

• /var/www/jelica.com/data (private web server/application data - e.g. things like passwords
for PHP applications, web server password files generated using the htpasswd command, or
SQLite database files)

• /var/www/jelica.com/htdocs (public files, PHP scripts, HTML)

• /var/www/jelica.com/cgi-bin (publicly-accessible CGI scripts)

• /var/www/jelica.com/log (logs for this host)

• /var/www/jelica.com/tmp (temporary files, e.g. files uploaded using PHP)

In cases where we are using chrooting, we might also have the following:

• /var/www/jelica.com/bin (private binaries executed by this host; allows us to isolate
different binaries for different hosts, e.g. if one host requires PHP 5 and another wants PHP
4)

We'll miss this last one out of our virtual host configuration, for simplicity's sake.

We are also going to store each virtual host configuration in its own configuration file, named after
the host. For example, for our jelica.com and oceanarea.com hosts, we will put their configuration
in these two files:

1. /opt/apache/conf/jelica.com.conf

2. /opt/apache/conf/oceanarea.com.conf

I am not going to cover how to setup a machine to restrict a user to their own virtual host
directories, with no access to the rest of the filesystem. (See the earlier section on chroot.)

Setting up jelica.com
1. Create the user in charge of the domain:

useradd --home /var/www/jelica.com jelicacom

2. Make the user's home directory accessible to Apache:

chgrp apache /var/www/jelica.com
chmod g+x /var/www/jelica.com

47

3. Create an htdocs directory for the user inside their home directory:

mkdir /var/www/jelica.com/htdocs
chown jelicacom:apache /var/www/jelica.com/htdocs
chmod 2750 /var/www/jelica.com/htdocs

Note that the last command also changes the sticky bit on the directory (the '2' at the start of
the argument to chmod), so that any files added to the directory end up being owned by the
apache group.

4. Make an index file for the domain in /var/www/jelica.com/index.php

5. Create the configuration file for the domain in /opt/apache/conf/jelica.com.conf

<VirtualHost *:80>
 DocumentRoot /var/www/jelica.com/htdocs
 ServerName jelica.com

 <Directory /var/www/jelica.com/htdocs>
 Order Allow,Deny
 Allow from all
 </Directory>
</VirtualHost>

6. Set permissions:

chmod 600 /opt/apache/conf/jelica.com.conf

7. Add the directive to make Apache attach virtual host definitions to all IP addresses of the
server:

NameVirtualHost *:80

If you had a machine with multiple IP addresses, you could just set up one or two of these to
serve virtual hosts from, e.g.

NameVirtualHost 11.12.13.14:80

8. Pull the jelica.com configuration file into httpd.conf:

Include /opt/apache/conf/jelica.com.conf

9. Create a file in /home/jelicacom/htdocs for testing called index.php

10. Add an entry to /etc/hosts to map the domain name jelica.com to the localhost IP address.
This enables to test our new virtual host without having to register the domain name etc..

127.0.0.1 jelica.com

11. Test at http://jelica.com/

12. Test user login by attempting to login via ssh:

ssh jelicacom@localhost

Make sure the logged in user ends up in the /var/www/jelica.com directory.

48

mailto:jelicacom@localhost
http://jelica.com/

Setting up logging and CGI for a virtual host

We can setup the logs and CGI for the virtual host like this:

1. Make directories for the logs and CGI scripts inside the virtual host's directory:

mkdir /var/www/jelica.com/logs
mkdir /var/www/jelica.com/cgi-bin

2. Set permissions on the directories:

chown -R jelicacom:apache /var/www/jelica.com
chmod 2770 /var/www/jelica.com/logs
chmod 2750 /var/www/jelica.com/cgi-bin

Note the cgi-bin is set up the same as the htdocs directory. However, the logs directory is
setup to allow the apache user to write into the directory.

3. Add these directives to jelica.com.conf, inside the <VirtualHost> directive:

<VirtualHost *:80>
 DocumentRoot /var/www/jelica.com/htdocs
 ServerName jelica.com

 <Directory /var/www/jelica.com/htdocs>
 Order Allow,Deny
 Allow from all
 </Directory>

 # error log

 ErrorLog /var/www/jelica.com/logs/error_log

 # access log

 <IfModule log_config_module>

 CustomLog /var/www/jelica.com/logs/access_log combined

 </IfModule>

 # cgi-bin

 <Directory /var/www/jelica.com/cgi-bin>

 Order Allow,Deny

 Allow from all

 </Directory>

 ScriptAlias /cgi-bin/ /var/www/jelica.com/cgi-bin/

</VirtualHost>

49

Note that log rotation will need to take the new log location into account; alternatively, you can
leave it up to users to do their own log rotation.

Allow following of symlinks

It is sometimes useful for users to be able to setup directories outside their main webroot but be able
to symlink those directories into the webroot (this is useful for setting up Rails applications, for
example).

You can turn this option on by adding this directive inside the <Directory
/var/www/jelica.com/htdocs> directive:

Options SymLinksIfOwnerMatch

Allowing directive overrides

We can also allow users to create authorisation and authentication for their directory inside .htaccess
files by adding this directive inside the <Directory /var/www/jelica.com/htdocs> directive:

AllowOverride AuthConfig Limit FileInfo

We haven't overridden Indexes or Options for the directory. Allowing directives from these groups
to be overridden can introduce security problems. However, you may have to if your users demand
it.

The FileInfo setting allows users to employ mod_rewrite directives inside their directives (useful
for friendly URL generation and commonly used by content management systems).

Virtual host PHP configuration

We can use Apache configuration directives to affect how PHP behaves on a per-virtual-host basis.
This can be used to secure what PHP running under that virtual host is able to do, and to put any
PHP-related information (e.g. logs and session files) inside the virtual host directory.

There are two specific directives available to Apache for configuring PHP:

1. php_admin_flag <php_directive> <on_or_off>
This is used to set boolean (true/false) PHP directives

2. php_admin_value <php_directive> <setting>
This is used to set PHP directives which are non-boolean, e.g. strings, numbers

We can use these directives as follows:

1. php_admin_value open_basedir /var/www/jelica.com
This restricts PHP to opening files inside the specified directory. Any attempt to open a file
outside this directory will throw an error. Note that we've set this to the root for the virtual
host, rather than the htdocs directory, to allow PHP access to the /data directory and the /tmp
directory.

2. php_admin_value error_log "/var/www/jelica.com/logs/php_log"
Put the PHP error log inside the virtual host's log directory

3. php_admin_value session.save_path "/var/www/jelica.com/sessions"
php_admin_value session.referer_check jelica.com
Put any session information into a separate sessions directory specific to this virtual host.
This prevents users from other virtual hosts spying on this host's session data.

50

We also have to set the session.referer_check to jelica.com. However, if we are allowing
domain parking, we might want to remove this constraint: if a cookie is set under the parked
domain, the referer (when the cookie is passed to the next page) will reference the parked
domain, causing PHP to reject the cookie (as the referer is wrong).

For the above to work, we will need a sessions directory:

mkdir /var/www/jelica.com/sessions
chown jelicacom.apache /var/www/jelica.com/sessions
chmod 2770 /var/www/jelica.com/sessions

4. php_admin_flag file_uploads on
php_admin_flag upload_tmp_dir /var/www/jelica.com/tmp
These settings allow users to upload files using their PHP scripts.

Again, you will need a tmp directory for the virtual host:

mkdir /var/www/jelica.com/tmp
chown jelicacom.apache /var/www/jelica.com/tmp
chmod 2770 /var/www/jelica.com/tmp

5. One more useful trick is to enable users to create files from inside their PHP scripts. For
now, we will enable PHP to write only into the htdocs directory.

The first step is to allow the apache user to write to the htdocs directory:

chmod g+w /var/www/jelica.com/htdocs

The only issue with allowing apache to create files inside htdocs is that the files created this
way will not be editable by the virtual host's owner (in this case, jelicacom). One solution is
to add the user to the apache group:

usermod -G jelicacom,apache jelicacom

However, this could potentially give the user access to files in other virtual hosts (i.e. any
file owned by the apache group).

The final configuration file for our virtual host
Combining these settings together inside the <Directory> setting for the virtual host (in
/opt/apache/conf/jelica.com.conf) gives us:

<VirtualHost *:80>

 DocumentRoot /var/www/jelica.com/htdocs

 ServerName jelica.com

 <IfModule php5_module>

 php_admin_value open_basedir /var/www/jelica.com

51

 php_admin_value error_log /var/www/jelica.com/logs/php_log

 php_admin_value session.save_path /var/www/jelica.com/sessions

 php_admin_value session.referer_check jelica.com

 php_admin_flag file_uploads on

 php_admin_value upload_tmp_dir /var/www/jelica.com/tmp

 </IfModule>

 <Directory /var/www/jelica.com/htdocs>

 Order Allow,Deny

 Allow from all

 Options SymLinksIfOwnerMatch

 AllowOverride AuthConfig Limit FileInfo

 </Directory>

 # error log

 LogLevel info

 ErrorLog /var/www/jelica.com/logs/error_log

 # access log

 <IfModule log_config_module>

 CustomLog /var/www/jelica.com/logs/access_log combined

 </IfModule>

 # cgi-bin

 <Directory /var/www/jelica.com/cgi-bin>

 Order Allow,Deny

 Allow from all

 </Directory>

 ScriptAlias /cgi-bin/ /var/www/jelica.com/cgi-bin/

</VirtualHost>

Fixing localhost
While this approach sets up jelica.com, it simultaneously destroys the configuration for localhost.
To keep our current localhost settings, we need to remove the settings specific to the localhost
website into a separate config. file called /opt/apache/conf/localhost.conf (remember to chmod to
600).

<VirtualHost *:80>

 ServerName localhost

52

 ### location of the web server document store

 DocumentRoot /var/www/htdocs

 ### logging

 # access log

 <IfModule log_config_module>

 CustomLog /var/log/apache/access_log combined

 </IfModule>

 ### base website

 <Directory /var/www/htdocs>

 Order Allow,Deny

 Allow from all

 </Directory>

 ### CGI

 <Directory /var/www/cgi-bin>

 Order Allow,Deny

 Allow from all

 </Directory>

 ScriptAlias /cgi-bin/ /var/www/cgi-bin/

</VirtualHost>

Note that I've left configuration for the error_log in the main httpd.conf file, as otherwise we get
errors for localhost in /var/log/apache/error_log, and other generic error messages not related to
localhost but to the server more generally in /opt/apache/log/error_log.

We can pull this configuration into httpd.conf using:

Include /opt/apache/conf/localhost.conf

Another pain is that this will also break our SSL config., as we have moved the <Directory>
directive from httpd.conf and put it into localhost.conf. We can fix this by specifying a <Directory>
directive inside the <VirtualHost> directive in /opt/apache/conf/ssl.conf like this:

base website

<Directory /var/www/htdocs>

53

 Order Allow,Deny

 Allow from all

</Directory>

54

Troubleshooting
Occasionally, we may run into problems with our Apache and PHP configuration. Here are a few
ways to track down those problems.

Logs
The log files should be your first port of call.

• /var/log/apache/error_log
This will record any Apache-specific error messages, and also some other info. (e.g. SSL
initialisation info.).

• /var/log/apache/access_log
This records requests made to the web server. It is not as useful as the error_log, but can
enable you to determine what was happening when an error occurred.

• /var/log/php/php_log
Contains messages specific to PHP applications.

If the Apache log files are not sufficiently verbose, you can turn up the level of error reporting in
httpd.conf by setting the LogLevel directive to "debug" (you need to restart for this to take effect).

Status reports
Apache has a status module which enables you to get some general information about the server.
However, it can be a security liability, as once the module is active, any user can add a status report
to their virtual host via a .htaccess file. So we have disabled it.

Here's a sample configuration for reference:

server status

LoadModule status_module modules/mod_status.so

<IfModule status_module>

 ExtendedStatus On

 <Location /status>

 SetHandler server-status

 Order Deny,Allow

 Deny from all

 Allow from 127.0.0.1

 </Location>

</IfModule>

55

This makes the status report available at http://localhost/status, but only to users on the local
machine.

For more information, see:

http://httpd.apache.org/docs/2.2/mod/mod_status.html

Standard tools
Some standard command line tools can give you a view of the system processes, which might help
you find memory hogs and other system-level problems:

• top
View processes and their memory and CPU usage in real time.

• ps
View a snapshot of processes currently running.

More advanced tools
Other debugging tools go outside the realms of Apache-specific and into more general system tools:

• ethereal
A general network monitoring tool, which can be useful for viewing the responses returned
by Apache.

• strace
This gives a low-level view of the activity taking place when a binary executes, but its
output is difficult to decipher. I've never found a need to use a tool with this level of
complexity when debugging.

As an example, you can monitor Apache startup using:

 strace /opt/apache/bin/httpd -k start

This shows the files Apache attempts to read/write, and may help identify issues like
missing system libraries.

56

http://localhost/status

License
This work is licenced under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5
License. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ or
send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

If you have any corrections/comments on this text, please feel free to contact me (elliot at
moochlabs.com).

57

	Introduction
	Compiling Apache
	Pre-compilation decisions
	Preparation
	Preparation on Fedora

	Compiling
	Controlling Apache
	Modules
	Disabling modules
	Enabling modules

	Other configure options
	Other useful modules we're not using
	Which Multi-Processing Module?
	Our uber configure command
	Recompiling
	1. Upgrading the main httpd binary
	2. Compiling modules statically into the main Apache binary
	3. Compiling new shared modules

	Patching

	Configuring Apache
	Default configuration
	Viewing all loaded modules
	Initial configuration
	Starting/stopping automatically
	Starting/stopping automatically using chkconfig on Fedora

	General server limits
	MPM settings
	File layout
	Summary of filesystem layout

	Logging
	Adding logging configuration
	Log rotation using rotatelogs and pipes
	Log rotation using logrotate
	Custom log rotation scripts

	Configuring file serving
	Safe defaults for serving directories
	Options on directories
	AllowOverride: overriding server configuration in a directory
	Hiding important files
	Setting the default home page
	Setting the right MIME types
	Compressing content sent to the client

	Hiding the server's identity
	chrooting

	CGI
	Apache and CGI
	Improving security with suEXEC and FastCGI

	SSL
	Creating a self-signed certificate
	Configuring Apache to use SSL

	Adding PHP
	Pre-installation
	Preparation
	Compiling PHP
	A note on SELinux

	Removing PHP
	Extensions
	Recompiling PHP
	1. Adding a new extension
	2. Recompiling the PHP binary

	Configuring PHP
	Testing PHP + MySQL
	Testing PHP's GD extension

	.htaccess files
	Setting up authentication by username and password
	Authorisation by group
	Rewriting URLs

	Virtual hosts
	Setting up jelica.com
	Setting up logging and CGI for a virtual host
	Allow following of symlinks
	Allowing directive overrides
	Virtual host PHP configuration

	The final configuration file for our virtual host
	Fixing localhost

	Troubleshooting
	Logs
	Status reports
	Standard tools
	More advanced tools

	License

